

MACS Overview

Tom Prevot

NASA Ames Research Center

Overview

- MACS Use
- Capabilities
- Software
- What to expect in this workshop

What is MACS?

 Research software for simulating and evaluating air traffic operations

Intended Use

- Provide a better understanding of roles, responsibilities, and requirements for human operators and automation in future air traffic management (ATM) systems.
- Develop and evaluate operational concepts and technologies for the Next Generation Air Transportation System (NextGen) in a high-fidelity human-in-the-loop (HITL) environment.

AIR TRAFFIC CONTROL OPERATIONS NEAR-TERM / 2016

18 aircraft are allowed in Airspace "sectors" at any given time Teams of 2 Air Traffic Controllers per sector required for high traffic Video shows 8 controllers handling ~75 aircraft

Air Traffic Control

AIR TRAFFIC CONTROL OPERATIONS MID-TERM / 2022

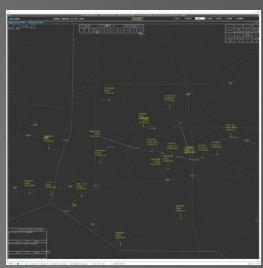
25 aircraft are allowed in Airspace "sectors" at any given time 1 or 2 Air Traffic Controllers per sector possible Video shows 7 controllers handling ~150 aircraft

Air Traffic Control in the Mid-Term

AIR TRAFFIC CONTROL OPERATIONS FAR-TERM / 2030

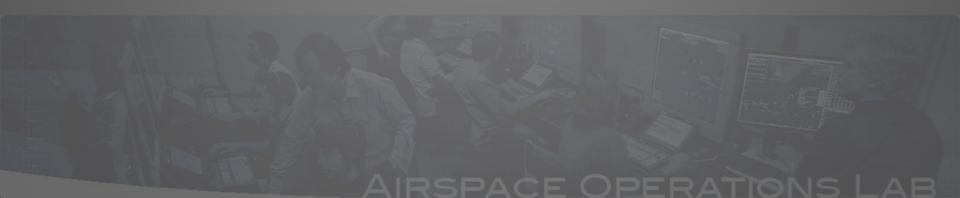
30, 40, or 50 aircraft are allowed in Airspace "sectors" at any given time 1 or 2 Air Traffic Controllers per sector possible Video shows 8 controllers handling ~300 aircraft

Air Traffic Control in 2030 ...



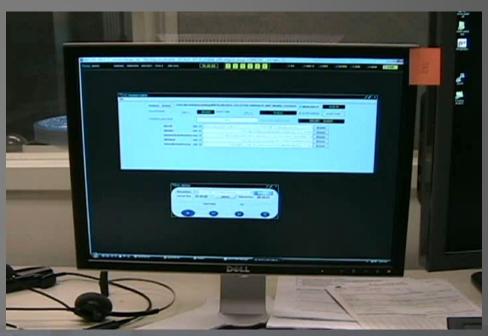
RECAP: What is MACS?

- Portable JAVA program that emulates and simulates current and future air traffic operations in the NAS
- A comprehensive environment for large scale and small scale realtime integrated air/ground simulations
 - From standalone laptop application to 50+ networked operator stations
- Rapid prototyping environment and test bed for future air traffic concepts
 - ATC/ATM automation and interfaces
 - Flight deck automation and interfaces
 - Air/ground technologies and procedures
- System for education and training



What is the Main Idea?

- All operators (human and automation) look at the same situation from different viewpoints
 - MACS maintains a central representation of the air traffic situation and provides access to all the objects stored therein
 - The different viewpoints are realized through a variety of displays and input devices
- All operators (human and automation) need to perform many of the same functions
 - MACS provides a knowledge-base with classes and methods for commonly used functions like route parsers, trajectory generators, performance calculators, etc.
 - Displays and automation access the common knowledge-base tailored to their task


CAPABILITIES

MACS Simulation in the AOL

- Experiment management
- Scenario Generation
- Flight decks and flight management
- Air traffic management
- Air traffic control (domestic, oceanic, approach)
- Advanced Automation
- Weather

MACS Capabilities

Air traffic simulator /target generator

Multi aircraft autonomous agent

Multi aircraft control flight deck

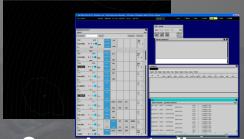
Single aircraft flight deck (B777 style)

generation

Experiment control

Data collection Analysis

Aeronautical Datalink and Radar Simulator


(ADRS) comm. network

Center controller workstation (DSR)

TRACON controller workstation (STARS)

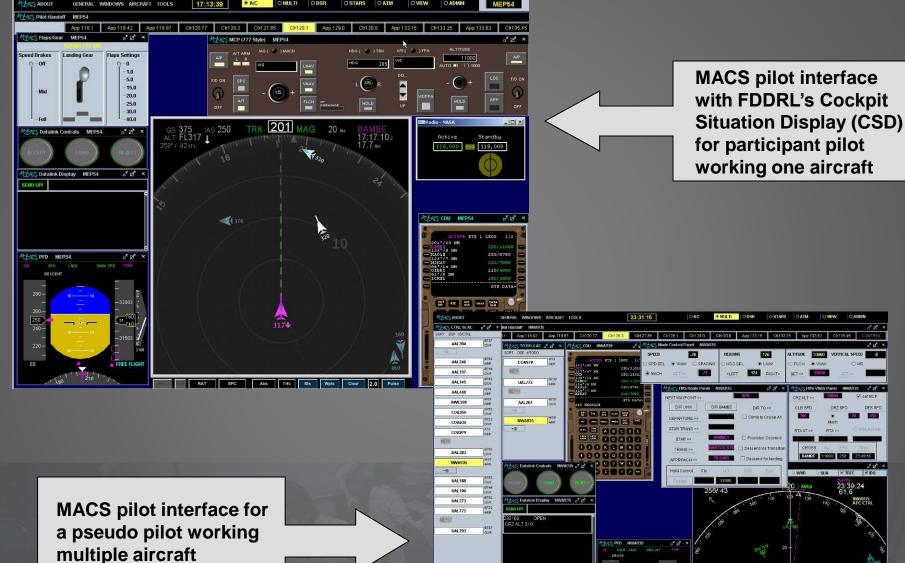
Oceanic controller workstation (ATOP/Ocean21)

Traffic and weather

Traffic flow and airspace management workstations

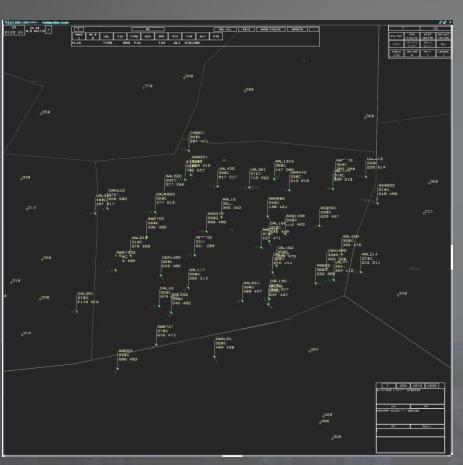
REAL-TIME CAPABILITIES

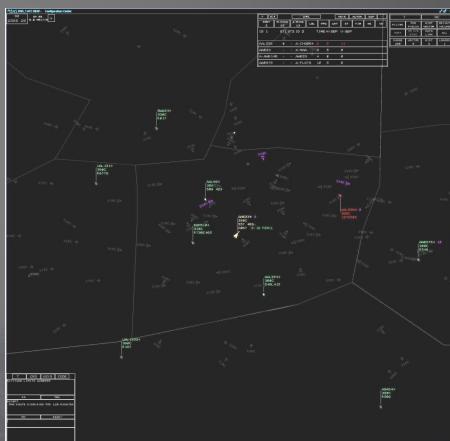
Aircraft Simulation and Flight Deck Displays


Aircraft Simulation and Flight Deck Displays

- Full flight simulator
- Selectable dynamics model (Motion Predictor, 4DOF/PAS-Aero, ...)
- Flight deck for external target generator
- Performance models for the majority of current aircraft types
- Selectable equipage
- Glass cockpit displays
- Full FMS capabilities with RTA (Also used in Standalone mode)
- ASAS spacing and merging logic
- Conflict detection logic for (airborne self-separation)
- FANS style CPDLC interface
- Interface to advanced Cockpit Display of Traffic Information (CDTI)
- Automatic processing of selected data link messages with predefined delays
- Agent support for pseudo pilots (reminders or automation)

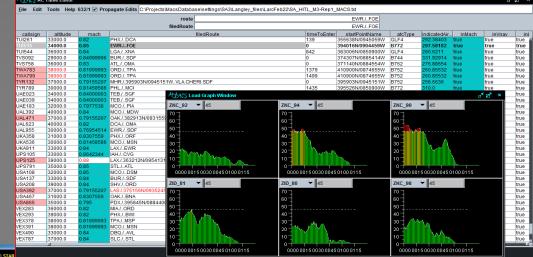
Aircraft Simulation and Flight Deck Displays




simultaneously

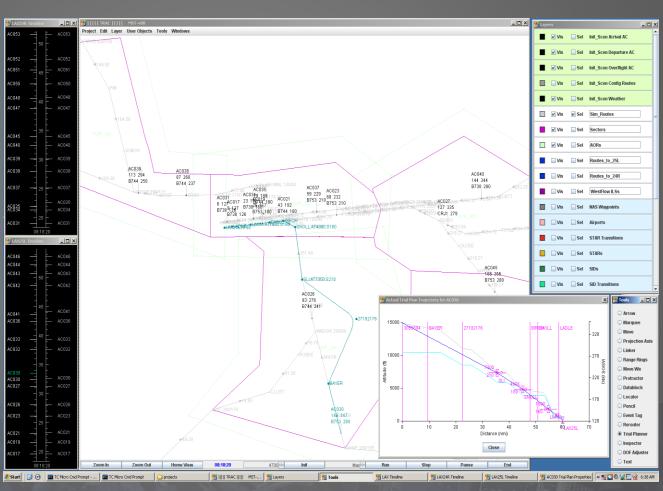
- Highly Advanced NextGen automation:
 - Multi-layered rapid feedback conflict probing
 - Weather penetration probe
 - Data comm. integration
 - Fully automated, semi-automated, manual operations
 - AAC Auto-Resolver with Weather avoidance *(Erzberger et al.)
 - Interactive and closed loop automated
 - TSAFE conflict resolver (Erzberger & Heere)
- New Paradigms in Display Design
 - High-lighting/low-lighting scheme with interactive filters
 - Multi Aircraft Selection and command processing
 - Multi aircraft trial planning
- Complexity Management
 - Interactive graphs and tables for various complexity factors

- NAS Controller workstation emulations:
 STARS, DSR, ATOP/Ocean 21, ERAM to come
- Selectable data sources:
 - Perfect, Center radar, TRACON radar, ADS-B
- Multi-Center adaptation
- Advanced ATSP automation:
 - 4D trajectory generation for flight plan routing, scheduling, reported FMS trajectories, ADS-B reported state and flight control system targets
 - Arrival scheduler and timelines
 - Medium-term Conflict detection
 - Trial planning and speed advisory functions for metering support
 - Automation for automatic transfer of communication and RTA uplinks


OFF-LINE CAPABILITIES

MACS Scenario Editor

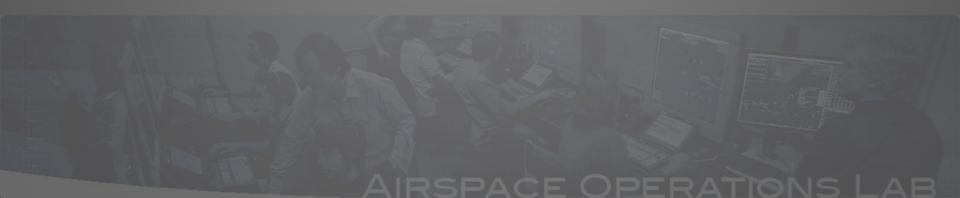
- Spreadsheet-style editor
 - Error checking and correction
 - Automatic functions
 - Load graphs


- Graphical editor
 - Trajectories for aircraft and convective weather
 - Time slider
 - Weather and conflict probing
 - Trajectory planning

TRAC

(TCSim Route Analyzer/Constructor)

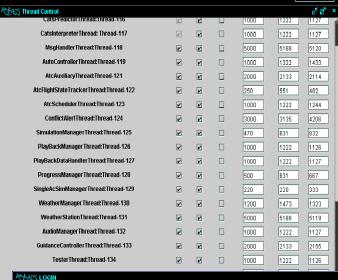
- Airspace design
- Fast time simulation
- Data analysis

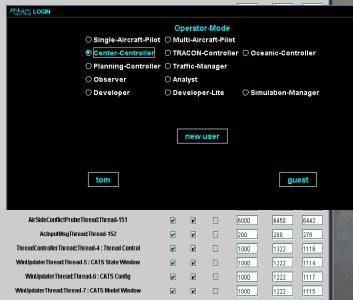


Wednesday 8/4 1300 hrs AIAA-2010-8364

Graphical Specification of Trajectory Modification Options in TRAC T. Callantine

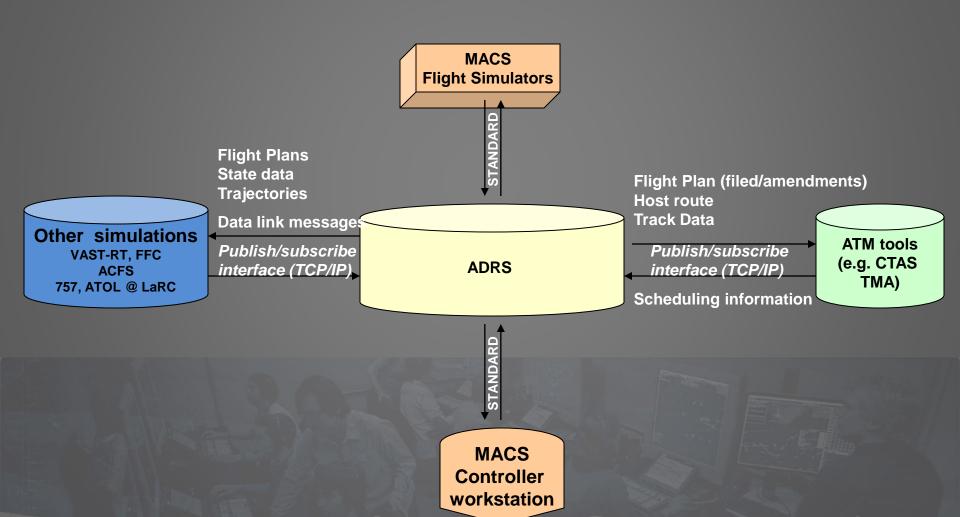
SOFTWARE




MACS Software (state 2010)

- 415,000 Source Lines of Code (JAVA)
- 2230 files
- Up to 194 parallel threads
- Unique automatic thread monitoring and restart
- Same software used at all MACS stations in a simulation
- Standalone version provides all capabilities of distributed simulation
- Very robust and scalable:
 E.g. experiment runs in 2010 of 3 hour length,
 3000+ aircraft, 16 controllers and 10 pilots

Basic Software Architecture


- Each MACS station runs the identical software independently
- 1 of 12 operator modes can be selected
- Only those threads and windows are started that are required for a particular operator mode
 - Low: TRACON-Controller:
 - High: Developer:
- Thread Management Process handles 150
 200 threads
- Each functionality and each window is controlled by it's own thread

MACS Interface with Other Systems

All communication is handled by one or more networked ADRS processes

The ADRS provides publish/subscribe interfaces for MACS, other simulators and tools and maintains the entire state of the simulation

RESEARCH EXAMPLES

Recent Research in the AOL (2010-2011)

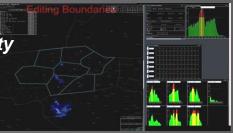
Flow Based Trajectory Management

Use tools and procedures to develop and coordinate trajectory clearances that span multiple sectors, meet traffic management objectives and provide user benefit

Flexible Airspace Management

Dynamically change airspace to distribute capacity more evenly between sectors

Use flow corridors for dominant homogeneous flows to increase airspace throughput



Separation Assurance/Functional Allocation Use automation to manage aircraft separation to achieve

much higher airspace capacity than today

Controller Managed Spacing

Use tools, displays and procedures to enable Optimized Profile Descents with High Throughput

WORKSHOP

What to expect from this workshop

- Overview over MACS capabilities
- Instructions on basic installation and configuration
- Detailed discussions on commonly used functions (Center/TRACON, pilot)
- Discussion of scenario and weather Editor
- Data collection and analysis
- Opportunity for questions

Day 1 schedule

- 8:30am Intro and MACS overview
- 10:00 am − *15 min break*
- 10:15am Getting started with MACS
- 11:30am How to prepare and run a simulation
- 12:45pm *LUNCH*
- 1:45pm Multi aircraft flight deck overview
- 3:15pm *15 min break*
- 3:30pm ATC overview
- 4:45pm Research community MACS usage
- 5:30pm End Day 1

^{*}All presentations are followed by a 15-30 minute Q&A session

Day 2 schedule

- 8:30am Scenario editor and convective weather editor
- 9:45am *15 min break*
- 10:00am MACS data output and analysis
- 11:15am TRAC overview
- 12:30 *LUNCH*
- 1:30pm MACS development overview
- 2:45pm *15 min break*
- 3:00pm MACS Q&A with AOL team (parallel sessions)
- 5:30pm End Day 2

*All presentations are followed by a 15-30 minute Q&A session

What else to expect from this workshop

INFORMATION OVERLOAD

VARIOUS ITEMS TO TAKE HOME

Many More Questions

The MACS-Workshop Team

AOL Presenters:

- Connie Brasil
- Chris Cabrall
- Todd Callantine
- Sarah Gregg
- Al Globus
- Jeffrey Homola
- Rick Jacoby
- Vick Kelkar
- Michael Kupfer
- Joey Mercer
- Tom Prevot
- James Wong

Many additional thanks to

- Holly Latta
- Robie Remple
- Phil So